
The Construction of a Retargetable Simulator for an Architecture Template
Bart Kienhuis1;2, Ed Deprettere1,Kees Vissers2, Pieter van der Wolf2

1 Delft University of Technology
2Philips Research Laboratories Eindhoven

E-mail:kienhuis@cas.et.tudelft.nl

Abstract

Systems in the domain of high-performance video signal
processing are becoming more and more programmable.
We suggest an approach to design such systems that involves
measuring, via simulation, the performance of various ar-
chitectures on which a set of applications are mapped. This
approach requires a retargetable simulator for an architec-
ture template. We describe the retargetable simulator that
we constructed for a stream-oriented application-specific
dataflow architecture. For each architecture instance of
the architecture template, a specific simulator is derived
in three steps: the architecture instance is constructed, an
execution model is added, and the executable architecture
is instrumented to obtain performance numbers. We used
object oriented principles together with a high-level simu-
lation mechanism to ensure retargetability and an efficient
simulation speed. Finally, we explain how a retargetable
simulator can be encapsulated within an environment for
automated design space exploration.

1. Introduction
In the past, systems in the domain of high-performance

video signal processing were often designed for only a sin-
gle application. Nowadays, however, these systems have
become moreprogrammableand they must be able to sup-
port a set of applications instead of a single application.
Programmability is important for two reasons: First, it per-
mits adjustments which, for example, arise from evolving
standards, and secondly, it offers the possibility of function
sharing, which is cost effective in multi-functional silicon
products.

Architectures for a single application are derived in var-
ious steps of refinement until a final architecture is found
that can be synthesized to silicon. In the case of a set of
applications, this refinement method would result in one ar-
chitecture for each application of the set. A different ap-
proach is to start from anarchitecture templatefrom which
individual architectures can be instantiated. The problem
then is to assess the quality and validity of such an architec-
ture instance for the targeted set of applications. We want
to use an approach in which many alternative architectures

can be evaluatedquantitatively. This provides an objective
basis on which eventually one architecture can be selected
that performs best for a set of applications.

We measure theperformanceof an architecture instance
on which a set of applications is mapped and executed as
suggested in [1]. This approach, henceforth called as the
Y-chart (not to be confused with Gajski and Kuhn’s Y-
chart [2]), is shown in Figure 1. We need to be able to
describe various architectures and sets of applications and
to derive mappings for applications onto architectures. We
also need to make and analyze a model of an architecture
such that we can obtain its performance numbers. System
with better performance can be achieved by making adjust-
ments in the architecture as indicated by the “lightbulb” in
Figure 1. A better performance can also be achieved by
changing the way the algorithms are described or choosing
a different mapping. We focus here solely on the architec-
ture.

Numbers

Mapper
Applications

Performance

Retargetable
Simulator (ORAS)

Architecture

Figure 1. The Y-chart approach

An architecture templatedescribes in a parameterized
form a class of architectures by giving the available element
types and the composition rules for these elements types.
The architecture template parameters need to be assigned
values to obtain an instance. All these parameters together
span a largedesign space. We canexplorethis design space
by changing some of the parameter values in a structured
way and evaluating the performance of an architecture in-
stance.

At Philips Research a particular class of stream-oriented
application-specific dataflow architectures has been investi-
gated [4]. The dataflow architecture is to be used in video

1



applications for the consumer market. An example of such
a dataflow architecture is given in Figure 2. It consists
of different application-specific processors operating inde-
pendently of each other on data streams. The processors
can performcoarse-grainfunctions like “filtering” or “sam-
ple rate conversion”. The streams are exchanged between
the coarse-grain processors via a communication network
which is controlled by some global controller.

C
o

ar
se

-G
ra

in

Input/Output Stream

Communication Structure

Global Controller

P
ro

ce
ss

o
r

Figure 2. Stream Based Dataflow Architecture

Because the video applications of interest are data-
dependent, we use simulation to get clock-cycle accurate
performance numbers. As a consequence, aretargetable
simulator [6] is needed for this class of dataflow architec-
tures. We have constructed a retargetable simulator for the
dataflow architecture. In this paper we explain how we have
constructed our Object Oriented Retargetable Architecture
Simulator (ORAS) and how ORAS derives a specific simu-
lator for one particular architecture instance.

The organization of this paper is as follows. We present
the problem statement and requirements in Section 2. Re-
lated work is discussed in Section 3, followed by our solu-
tion approach in Section 4. In Sections 5, 6, and 7 we elab-
orate on the three steps suggested in the solution approach.
In Section 8 we show how a retargetable simulator can be
used in a design space exploration. We present conclusions
in Section 9.

2. Problem Statement & Requirements
The problem we address in this paper is how to build a

retargetable architecture simulator for a class of dataflow ar-
chitectures and how specific simulators can be derived for
members of this class. The retargetable simulator is used to
explore the design space of this class of architectures. This
exploration is performed by specifying many different ar-
chitecture instances. We would like to automate this process
by having anexploration environmentwhere new architec-
ture instances are created and evaluated in a structured way.
The architecture instances that are specified need to bevalid
members of the class of dataflow architectures we look at.
Therefore we need to verify each architecture instance with

respect to the architecture template. A specific simulator
is derived for each architecture instance. Thespeedof this
simulator determines how many instances can be exercised
within a certain amount of time in the design space. This
speed requirement is especially important in the video do-
main. A certain amount of overhead will be incurred to sup-
port retargetabilityin the retargetable simulator. This over-
head reduces the simulation speed and should be kept as
small as possible. We know the class of dataflow architec-
ture and thus the kind of retargetability needed. We should
exploit this fact to get efficient retargetable simulators.

A specific simulation can be done on different levels of
detail with differentaccuracy. Although in the design of
an architecture it is often enough to compare different ar-
chitectures on the basis ofrelative performance numbers,
in later design stages comparisons must be based on de-
tailed performance numbers. However, there is a trade-off
between simulation accuracy and hence simulator complex-
ity, and simulation speed [3]. Aclock-cycle accuratesimu-
lation takes longer than aninstruction accuratesimulation
because more detail needs to be simulated. We looked at
different general purpose simulators and found the follow-
ing number of instructions per second: 200,000 for anin-
struction setsimulator, 40,000 for aclock-cycle accurate
simulator and 500 for anRTL accuratesimulator in VHDL.
Simulating, for example, one video frame of 720x576 pixels
by a simple video algorithm of 300 RISC-like instructions
per pixel on each of these simulators, requires respectively
10 minutes, 54 minutes and more than a whole day. Hence
the selected accuracy of a specific simulator which is to be
used in the Y-chart depends very much on the level at which
design decisions must be made.

3. Related Work

The Y-chart approach defines the need for retargetable
architecture simulators. The approach is common practice
in the design of instruction set processors, where dedicated
simulators are built in the C programming language mainly
for performance reasons [3]. The C language, however,
does not support parallelism. In the RASSP project, VHDL
is used to perform dedicated high-level architecture simu-
lations of high performance signal processing systems [9].
VHDL offers a parallel execution model and allows archi-
tecture models to be instrumented to get performance num-
bers, but it cannot be used to derive different architecture
instances. Only when very high-level architecture models
are used, is the execution speed of VHDL acceptable. The
Ptolemy [5] environment is very useful for the specifica-
tion of algorithms, but is less suitable for architecture explo-
rations. The Atrade tool [8] is reported to implement a kind
of Y-chart using the Ptolemy environment. It is only appli-
cable for static applications defined in the SDF-domain.



4. Solution Approach
A specific simulator is derived for an architecture in-

stance in three steps:

1. An architecture instance is constructed from a textual
architecture description.

2. An execution model is added for the simulation of the
architecture instance.

3. The architecture instance is instrumented withMetric
Collectorsto extract performance numbers for selected
performance metrics.

The first step concerns the structure of architecture in-
stances. We usedobject oriented principlesextensively and
generated aparserto read instances of the architecture tem-
plate of the dataflow architecture in abuilding blockfash-
ion. In the second step, an executable instance is obtained
by adding an execution model to the architecture structure,
based on a multi-threading package. Finally, performance
numbers are extracted during a simulation by instrumen-
tation of the architecture instance with probes or Metric
Collectors. These three steps, which are implemented in
ORAS, are shown in Figure 3. Next we explain in more
detail the three steps.

Grammar

Architecture

Simulator

Parser

PAMELA

Object Oriented Principles

Processes

Architecture
Description

Architecture Elements

Metric CollectorsInstrumenting

1. Structure

3. Measuring

Instance

Executable
Arch. Inst.

Perl Script

2. Execution Model

Mapping
Table

Run-Time Library

Defined as Classes

PAMELA constructs

Architecture Template

Figure 3. The 3 steps used within the Object ori-
ented Retargetable Architecture Simulator (ORAS)

5. Construction of Architecture Instances
The first step taken in the retargetable simulator is to con-

struct an architecture instance. This instance has to be a fea-
sible member of the class of dataflow architectures. What
are the requirements for the programming language that is
used to specify this structure?

Composition: Support the idea of element types, which are
the main constituents, as building blocks.

Verification: Allow the verification of compositions of el-
ement types.

Implementation: Allow element types to have different
implementations.

High Level Constructs: Provide high-level programming
constructions for effective and efficient compositions
of element types.

The object orientedlanguage C++ is well suited to model
the structure of architectures [10]. Aparseris used to check
whether the architecture instances that were modeled are
feasible.

5.1. Object Oriented Principles
Objects are instantiated from class descriptions. In the

definition of a class, a strong separation is made between
the interfaceof an object method and theimplementations
of this method. This allows us to specify the structural
relationship between objects and the behavior of the ob-
jects independently. We use this separation idea extensively
to implement alternative implementations (e.g. handshake,
bounded, or unbounded Fifo) for the same architecture ele-
ment type (e.g. a Buffer).

For each element type in the architecture there is anab-
stract classdescription. This description defines ageneral
interface to all other objects in the architecture. For the ele-
ment type Buffer, for example, we define the methodsread
andwrite. Other element types (e.g. a router or communica-
tion structure) can use the methods read and write to interact
with the element type Buffer, without knowing the particu-
lar implementations of these two methods. New classes are
derived from the abstract class, usinginheritance. The new
classes implement the methods of the abstract class using
late bindingor polymorphism.

To illustrate the separation idea, we have defined an ar-
chitecture element typeBufferas an abstract class. Data can
be stored (write) in a buffer or data can be retrieved (read)
from it, as shown in Figure 4. The read and write methods
must be implemented differently for a handshake buffer, a
bounded Fifo buffer, or an unbounded Fifo buffer. Con-
sequently we implemented the methodsread andwrite
differently for the various buffers. We implemented a sin-
gle buffer position, a circular buffer, and a linked list for
the handshake buffer, the bounded Fifo, and the unbounded
Fifo respectively.

We have already defined many different element types
(like Buffer, Controller, Router, Functional Element, and
Functional Unit) as well as various implementations for our
dataflow template. They are stored in the library of Archi-
tecture Elements as shown in Figure 3.

Recently the standard C++ programming language has
become supported by a very powerful library calledStan-
dard Template Library(STL) [7]. This library implements



Class

Implements the Interface

Buffer

Hand 
Shake

Fifo
Bounded

Unbounded
Fifo

Read

Write

Abstract Class Derived Class

Provides the Interface

Figure 4. The separation between interface and in-
terface implementation

very efficiently high-level programming constructs like vec-
tors, lists, and maps, to name a few. This has proved to be
very useful in the design of our retargetable simulator.

5.2. Architecture Description
We use aparser to break up a textualArchitecture De-

scription into architecture elements and to check if the de-
scription is a feasible instance of the architecture template.
An architecture template is described in terms of agram-
mar. The grammar is used by the parser to matches compo-
sitions of architecture elements as shown in Figure 3. If a
feasible composition is found, the elements are instantiated
from the library of architecture elements. This process is re-
peated until a complete architecture instance is constructed.
Because we specify architectures at the level of architec-
ture elements we achieve concise architecture descriptions.
It takes, for example, about 150 lines of code to describe
realistic video processing architecture instances.

6. Execution Model
We simulate dataflow architectures to get performance

numbers. As explained before, the simulation speed, and
thus level of modeling, is an important feature of a retar-
getable simulator. The PAMELA work of Van Gemund [12]
shows that it suffices to model two constraints in parallel
architectures, namelycondition synchronizationof data and
mutual exclusivityof resources, to get clock-cycle accurate
performance numbers. We can model these constraints us-
ing the concepts ofprocesses, semaphoresanddelays.

These concepts are implemented as C functions within
the PAMELA run-time library (RTL). This is amulti-
threading package that performs the necessary process
scheduling and has, unlike many other such packages, the
notion ofvirtual time.

To simulate our architecture instance, a parallelexecu-
tion modellike the RTL is needed that governs the order in
which the various architecture elements can make progress.
The architecture elements built in C++ and the RTL exe-
cution mechanism are coordinated via the PAMELA con-
structs. Figure 5 shows how the write method of a bounded

Fifo buffer is combined with PAMELA constructs. The
Fifo buffer is a particular implementation of the architec-
ture element typeBuffer. The semaphores used in the write
method, areroom anddata and the delay is modeled via
pam delay . We use the delay statement to model that a
write to a Fifo buffer will take one time unit, which is equiv-
alent to one clock cycle in the architecture.

Notice that within the figure we actually store samples
within an arraybuffer of sizecapacity in a specific
order determined by thewritefifo variable. We don’t
need the buffer functionality in order to do performance
analysis; we could suffice with using only PAMELA con-
structs. However, to get the correctrun-timebehavior of
the architecture, we also perform thesefunctionally correct
simulations to get more accurate and realistic performance
numbers.

void Fifo::write(Sample* a)
f

pam P(room); // Is there Room in the Fifo?
metricCollector->histogram(token++); //Measurement
buffer[writefifo] = a; // Write in buffer
writefifo = (++writefifo)%capacity;
pam delay (1); // It takes 1 clock cycle to write
pam V(data); // Tell there is data available

g

Figure 5. The Write Method of a Bounded Fifo
Buffer

The PAMELA processes are instantiated in the second
step of ORAS, as shown in Figure 3. Since the architecture
structure is built in the first step, the processes do not have to
decode the structural aspects of the architecture at run-time.
This results in an efficient but still flexible simulator. The
ORAS simulator can execute 10,000 coarse-grain functions
per second. These functions operate on samples.

7. Metric Collectors
To obtain performance numbers in the ORAS, we instru-

mented the architecture elements in the third step with Met-
ric Collectors. They collect various high-level performance
numbers during the execution of the simulator and present
results, possibly in statistical form, at the end of a simula-
tion. In Table 7 some performance metrics are given for the
element types of the dataflow architecture. The Metric Col-
lectors gather information about the complete architecture,
such as the number of executed operations or the total ex-
ecution time in clock cycles. These numbers are used, for
example, to evaluate the performance metric “parallelism”.
Other collectors measure how long a semaphore blocked a
process. This is a way of measuring the “response time” or
“waiting time”. In the code shown in Figure 5, the Metric
CollectormetricCollector determines the filling dis-
tribution within the Fifo buffer. Each time a token is written
into the Fifo buffer, the collector determines how many to-
kens are present in the buffer at that write time. At the end



Element Type Performance Metric

Comm. Structure Utilization
Controller Utilization
Buffer Filling distribution
Routers Response Time Controller
Functional Unit Utilization, Number of Context Switches
Functional
Element

Utilization, Pipeline Stalls
Throughput, Number of Operations

Architecture Number of Operations, Total execution time

Table 1. Implemented Performance Metrics for the
Different Element Types

of a simulation a histogram of the Fifo buffer filling is made
for every Fifo buffer in the architecture.

8. Design Space Exploration

Given the retargetable simulator ORAS, we can perform
a design space exploration. We need to select parameter
values from a range in a structured way. We create differ-
ent textual architecture descriptions with these parameters,
using the versatile scripting languagePerl [13], as shown in
Figure 3. A parameter value can represent a value for an el-
ement parameter (e.g. the size of a Fifo buffer), a structural
aspect of the architecture (e.g. the number of Processing
Elements used), or an alternative implementation of an ele-
ment type (e.g. select a bounded Fifo buffer or unbounded
Fifo buffer).

A specific simulator is derived in the ORAS from each
of the resulting architecture descriptions. To simulate the
architecture, we also need mappings as explained in the
Y-chart. Therefore we down-load a textual mapping table
into the specific simulator as shown in Figure 3. A differ-
ent table is down-loaded for each application of the targeted
set. When all simulation runs are completed, we calculate
graphs from the stored performance numbers. An example
of a visualization of an exploration is shown in Figure 6 and
discussed in [1].

Figure 6. Utilization of a Controller for Packet
Length versus Service Time

Enormous amounts of data are generated during design
space exploration. For the simple experiment shown in
Figure 6 we generated 100 different architecture instances
by changing 2 parameters:packetlengthandservicetime.
Thus 100 different simulation results were produced for
each application. The results provide performance num-
bers like, for example, thecontroller utilization. To manage
these amounts of data and their consistencies, we integrated
the Perl script and the retargetable simulator ORAS into the
Nelsisdesign data management system [11].

9. Conclusions
We illustrated the relevance of a retargetable simulator

in the context of the Y-chart. From the performance of the
ORAS at 10,000 coarse-grain instructions per second we
may conclude that we have been successful in building an
efficient, retargetable simulator that can measure the perfor-
mance of a class of dataflow architectures in a way that is
functionally correct and clock-cycle accurate. We exercised
the Y-chart for a kind of dataflow architecture and obtained
exploration results. Based on these results, a few interesting
architecture instances have been selected to be investigated
at more detail.

The current ORAS simulator was constructed for a
dataflow architecture template. We are currently investigat-
ing whether similar concepts can be used for more hetero-
geneous architecture templates.

References
[1] Bart Kienhuis, Ed Deprettere, Kees Vissers, Pieter van der Wolf. An ap-

proach for quantitative analysis of application-specific dataflow architectures.
In Proceedings of 11th Int. Conference of Applications-specific Systems, Ar-
chitectures and Processors, pages 338 – 349, 1997.

[2] D. Gajski. Silicon Compilers. Addison-Wesley, 1987.
[3] J. Hennessy and M. Heinrich. Hardware/software codesign of processors:

Concepts and examples. InHardware/Software Co-Design, pages 29 – 44.
NATO ASI Series, 1996.

[4] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer and Jochen
A.G. Jess. Prohid, A Data-Driven Multi-Processor Architecture for High-
Performance DSP. InProc. ED&TC, Mar. 17-20, 1997.

[5] Joseph Buck, Soonhoi Ha, Edward A. Lee and David G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping heterogeneous sys-
tems.International Journal of Computer Simulation, Aug. 31, 1992.

[6] P. Marwedel and G. Goossens.Code Generation for Embedded Processors,
chapter 1, pages 13 – 31. Kluwer Academic Publishers, 1995.

[7] D. R. Musser and A. Saini.STL Tutorial and Reference Guide: C++ pro-
gramming with standard template library. Addison-Wesley Professional
Computing Series, 1996.

[8] E. K. Pauer and J. B. Prime. An architectural trade capability using the
Ptolemy kernel. On Ptolemy Site http://ptolemy.eecs.berkeley.edu, Jan. 29,
1997.

[9] F. Rose and J. Shackleton. Performance modeling of system architectures.
VLSI Signal Processing, 15(1/2):97 – 110, Jan 1997.

[10] B. W. J. Sanjaya Kumar, Jamer H. Aylor and W. A. Wulf. Object-oriented
techniques in hardware design.Computer, 27(6):64–70, June 1994.

[11] P. van der Wolf et al. Design flow management in the Nelsis cad framework.
In Proceedings IEEE 28th Design Automation Conference, 1991.

[12] A. J. van Gemund. Performance Prediction of Parallel Processing Systems:
The PAMELA Methodology. InProc. 7th ACM Int. Conference on Super
computing, pages 318–327, July 19-23, 1993.

[13] L. Wall and R. L. Schwartz.Programming Perl. O’Reilly & Associates, Inc.,
March 1992.


